首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5759篇
  免费   315篇
  国内免费   37篇
  2023年   87篇
  2022年   110篇
  2021年   412篇
  2020年   211篇
  2019年   232篇
  2018年   308篇
  2017年   211篇
  2016年   293篇
  2015年   391篇
  2014年   426篇
  2013年   450篇
  2012年   444篇
  2011年   393篇
  2010年   269篇
  2009年   225篇
  2008年   235篇
  2007年   233篇
  2006年   177篇
  2005年   155篇
  2004年   110篇
  2003年   102篇
  2002年   87篇
  2001年   52篇
  2000年   48篇
  1999年   49篇
  1998年   19篇
  1997年   23篇
  1996年   18篇
  1995年   24篇
  1994年   15篇
  1993年   20篇
  1992年   33篇
  1991年   14篇
  1990年   13篇
  1989年   15篇
  1988年   18篇
  1987年   11篇
  1986年   8篇
  1985年   11篇
  1984年   18篇
  1983年   13篇
  1982年   18篇
  1981年   7篇
  1980年   10篇
  1978年   13篇
  1976年   9篇
  1974年   11篇
  1973年   7篇
  1971年   6篇
  1967年   9篇
排序方式: 共有6111条查询结果,搜索用时 703 毫秒
101.
The present study documents the root-knot nematodes (RKN) fauna of the Poonch division in Azad Jammu and Kashmir infecting vegetables. An overall prevalence of 40% of RKN was recorded. Of the four districts investigated, maximum prevalence was recorded in district Poonch with 59%, followed by Sudhnuti with 58%. The lowest prevalence of RKN was found in districts Bagh (29%) and Haveli (33%). Out of 15 vegetables investigated, RKN was found on five crops. The highest prevalence of 37.8% was recorded on okra, followed by 31.3% on cucumber and 17.5% on tomato. RKN was less prevalent on eggplant (8.3%) and beans (7.7%). Three RKN species, that is Meloidogyne incognita, Meloidogyne javanica and Meloidogyne arenaria, were found infecting the hosts. M. javanica was found to be the most prevalent followed by M. incognita and M. arenaria. This trend was found in all the districts. Overall prevalence of M. javanica as sole population was 9% and that of M. incognita was 2%. Meloidogyne arenaria was not found in any of the fields as sole population. The prevalence of M. incognita with M. javanica or M. arenaria as mixed populations was 8% and 5%, respectively, and that of M. javanica with M. arenaria was 4%. Similarly, all the three species prevailed as mixed populations in 12% of the fields in the division. The severity of RKN infections, measured as galling index, was found to be variable within each infected field (GI 2–9). Identification of RKN species was based on the morphology of perineal patterns and confirmed by molecular SCAR and CO1 makers based identification. In conclusion, RKN were distributed in the Poonch division and M. javanica was predominant. Cucumber, okra, tomato and eggplant were severely attacked by these nematodes warranting the adoption of stringent control strategies for their management.  相似文献   
102.
Cadmium (Cd) is highly toxic metal for plant metabolic processes even in low concentration due to its longer half-life and non-biodegradable nature. The current study was designed to assess the bioremediation potential of a Cd-tolerant phytobeneficial bacterial strain Bacillus sp. SDA-4, isolated, characterized and identified from Chakera wastewater reservoir, Faisalabad, Pakistan, together with spinach (as a test plant) under different Cd regimes. Spinach plants were grown with and without Bacillus sp. SDA-4 inoculation in pots filled with 0, 5 or 10 mg kg−1 CdCl2-spiked soil. Without Bacillus sp. SDA-4 inoculation, spinach plants exhibited reduction in biomass accumulation, antioxidative enzymes and nutrient retention. However, plants inoculated with Bacillus sp. SDA-4 revealed significantly augmented growth, biomass accumulation and efficiency of antioxidative machinery with concomitant reduction in proline and MDA contents under Cd stress. Furthermore, application of Bacillus sp. SDA-4 assisted the Cd-stressed plants to sustain optimal levels of essential nutrients (N, P, K, Ca and Mg). It was inferred that the characterized Cd-tolerant PGPR strain, Bacillus sp. SDA-4 has a potential to reduce Cd uptake and lipid peroxidation which in turn maintained the optimum balance of nutrients and augmented the growth of Cd-stressed spinach. Analysis of bioconcentration factor (BCF) and translocation factor (TF) revealed that Bacillus sp. SDA-4 inoculation with spinach sequestered Cd in rhizospheric zone. Research outcomes are important for understanding morpho-physio-biochemical attributes of spinach-Bacillus sp. SDA-4 synergy which might provide efficient strategies to decrease Cd retention in edible plants and/or bioremediation of Cd polluted soil colloids.  相似文献   
103.
104.
In human‐modified landscapes, important ecological functions such as predation are negatively affected by anthropogenic activities, including the use of pesticides and habitat degradation. Predation of insect pests is an indicator of healthy ecosystem functioning, which provides important ecosystem services, especially for agricultural systems. In this study, we compare predation attempts from arthropods, mammals, and birds on artificial caterpillars in the understory, between three tropical agricultural land‐use types: oil palm plantations, rubber tree plantations, and fruit orchards. We collected a range of local and landscape‐scale data including undergrowth vegetation structure; elevation; proximity to forest; and canopy cover in order to understand how environmental variables can affect predation. In all three land‐use types, our results showed that arthropods and mammals were important predators of artificial caterpillars and there was little predation by birds. We did not find any effect of the environmental variables on predation. There was an interactive effect between land‐use type and predator type. Predation by mammals was considerably higher in fruit orchards and rubber tree than in oil palm plantations, likely due to their ability to support higher abundances of insectivorous mammals. In order to maintain or enhance natural pest control in these common tropical agricultural land‐use types, management practices that benefit insectivorous animals should be introduced, such as the reduction of pesticides, improvement of understory vegetation, and local and landscape heterogeneity.  相似文献   
105.
Most damaging plant diseases have been caused by viruses in the entire world. In tropical and subtropical areas, the damage caused by plant virus leads to great economic and agricultural losses. Single stranded DNA viruses (geminiviruses) are the most perilous pathogens which are responsible for major diseases in agronomic and horticultural crops. Significantly begomoviruses and mastreviruses are the biggest genus of plant infecting viruses, transmitted though Bemisia tabaci and members of Cicadellidae respectively. Plants possesses some naturally existing chemicals term as phyto-chemicals which perform important functions in the plant. Some antioxidant enzymes are used by plants for self-defense upon foreign invasion of infection. This review explains the present perceptive of influence of viral infections on phyto-chemicals, oxidative enzymes and biochemical changes occurring in the plant. Viral infection mediated phyto-chemical changes in plants mainly includes: up and down regulation of photosynthetic pigment, increase in the concentration of phenolic compounds, elevation of starch content in the leaf and up & down regulation of anti-oxidative enzymes including (GPX) guaiacol peroxidase, (PPO) polyphenol oxidase, (APX) ascorbate peroxidase, (SOD) superoxide dismutase and (CTA) catalase. These changes lead to initiation of hypersensitive response, by thicken of the leaf lamina, lignification under the leaf surface, blocking to stomatal openings, systematic cell death, generation of reactive oxidative species (ROS), activation of pathogen mediated resistance pathways i.e., production of salicylic acid and jasmonic acid. Collectively all the physiological changes in the plant due to viral infection supports the activation of defense mechanism of the plant to combat against viral infection by limiting virus in specific area, followed with the production of barriers for pathogen, accumulation of starch in the leaf and excess production of (ROS). These strategies used by the plant to prevent the spread of virus in whole plant and to minimize the risk of severe yield loss.  相似文献   
106.
Water is essential for the growth period of crops; however, water unavailability badly affects the growth and physiological attributes of crops, which considerably reduced the yield and yield components in crops. Therefore, a pot experiment was conducted to investigate the effect of foliar phosphorus (P) on morphological, gas exchange, biochemical traits, and phosphorus use efficiency (PUE) of maize (Zea mays L.) hybrids grown under normal as well as water deficit situations at the Department of Agronomy, University of Agriculture Faisalabad, Pakistan in 2014. Two different treatments (control and P @ 8 kg ha−1 ) and four hybrids (Hycorn, 31P41, 65625, and 32B33) of maize were tested by using a randomized complete block design (RCBD) with three replications. Results showed that the water stress caused a remarkable decline in total soluble protein (9.7%), photosynthetic rate (9.4%) and transpiration rate (13.4%), stomatal conductance (10.2%), and internal CO2 rate (20.4%) comparative to well-watered control. An increase of 37.1%, 36.8%, and 24.5% were recorded for proline, total soluble sugar, and total free amino acid, respectively. However, foliar P application minimized the negative impact of drought by improving plant growth, physio-biochemical attributes, and PUE in maize plants under water stress conditions. Among the hybrids tested, the hybrid 6525 performed better both under stress and non-stress conditions. These outcomes confirmed that the exogenous application of P improved drought stress tolerance by modulating growth, physio-biochemical attributes, and PUE of maize hybrids.  相似文献   
107.
Globally among biotic stresses, diseases like blight, rust and blast constitute prime constraints for reducing wheat productivity especially in Bangladesh. For sustainable productivity, the development of disease-resistant lines and high yielding varieties is vital and necessary. This study was conducted using 122 advanced breeding lines of wheat including 21 varieties developed by Bangladesh Wheat and Maize Research Institute (BAMRI) with aims to identify genotypes having high yield potential and resistance to leaf blight, leaf rust and blast diseases. These genotypes were evaluated for resistance against leaf blight and leaf rust at Dinajpur and wheat blast at Jashore under field condition. Out of 122 genotypes tested, 20 lines were selected as resistant to leaf blight based on the area under the diseases progress curve (AUDPC) under both irrigated timely sown (ITS) and irrigated late sown (ILS) conditions. Forty-two genotypes were found completely free from leaf rust infection, 59 genotypes were identified as resistant, and 13 genotypes were identified as moderately resistant to leaf rust. Eighteen genotypes were immune against wheat blast, 42 genotypes were categorized as resistant, and 26 genotypes were identified as moderately resistant to wheat blast. Molecular data revealed that the 16 genotypes showed a positive 2NS segment among the 18 immune genotypes selected against wheat blast under field conditions. The genotypes BAW 1322, BAW 1295, and BAW 1203 can be used as earlier maturing genotypes and the genotypes BAW 1372, BAW 1373, BAW 1297 and BAW 1364 can be used for lodging tolerant due to short plant height. The genotypes WMRI Gom 1, BAW 1349 and BAW 1350 can be selected for bold grain and the genotypes WMRI Gom 1, BAW 1297, BAW 1377 can be used as high yielder for optimum seeding condition but genotypes BAW 1377 and BAW 1366 can be used for late sown condition. The selected resistant genotypes against specific diseases can be used in the further breeding program to develop wheat varieties having higher disease resistance and yield potential.  相似文献   
108.
Tristeza is a devastating viral disease in all the citrus growing countries throughout the world and has killed millions of citrus trees in severely affected orchards. The citrus species grafted on sour orange rootstock are affected by this disease. Predominantly, the sweet orange, grapefruit and lime trees grafted on sour orange exhibit severe symptoms like quick decline, vein clearing, pin holing, bark scaling and degeneration leading to variable symptoms. Symptomatic expression of Citrus tristeza virus (CTV) in different hosts has been attributed to virus isolates which are from severe to mild. Different serological and molecular assays have been deployed to differentiate the strains of CTV. Citrus tristeza virus is diversified towards its strains on the basis of biological, serological and molecular characterization. Phenotypic expression is due to genetic alteration and different molecular basis have now been adopted for strain differentiation. This review will give a brief idea about the different CTV isolates, their characterization based on nucleic acid and serological assays. Different methods along with salient features for strain characterization has also been reviewed. This review will also open the new aspects towards formulation of management strategies through different detection techniques.  相似文献   
109.
110.
Plant and Soil - Success in agronomic biofortification of maize and wheat is highly variable. This study aimed to elucidate the differences in uptake and translocation of foliar-applied zinc (Zn)...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号